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Abstract. Neutron Compton scattering measurements have the potential to provide direct
information about atomic momentum distributions and adiabatic energy surfaces in condensed
matter. First applied to measuring the condensate fraction in superfluid helium, the technique
has recently been extended to study a variety of classical and quantum liquids and solids. This
article reviews the theoretical background for the interpretation of neutron Compton scattering,
with emphasis on studies of solids.

1. Introduction

Neutron Compton scattering is set apart from other branches of neutron scattering by the
magnitude of energy and momentum transfers involved, typically in excess of 1 eV and
30 Å−1, respectively. Neutron scattering is renowned as a sensitive probe of collective
properties in condensed matter, but in this extreme range of energies and momenta—the
impulse limit—it is single-particle properties that are probed. The scattering occurs so
rapidly, compared with the time-scales of atomic motion in the sample, that the measured
response is rather simply related to the equilibrium momentum distribution of the atoms.

Thus, the term neutron Compton scattering refers, not to a distinct type of scattering,
but to the usual neutron scattering cross-section in a limiting range of parameters. In the
impulse limit, the scattered intensity, as a function of energy for fixed momentum transfer
Q, consists of a peak centred atER = h̄2Q2/2M, the energy of recoil of a stationary
nucleus on colliding with a neutron. The dependence of the peak position on the mass
M of the struck atom implies that the scattering from different atoms appears at different
energies. This ability to separate contributions from different atomic species (and isotopes)
is a useful feature of the technique.

Doppler broadening results in a recoil peak whose width is proportional to the mean
kinetic energy of the atoms, and whose detailed shape depends on the distribution of atomic
momenta. The principal tool in interpreting experiments is the impulse approximation,
which predicts a precise relationship between the scattering data, in the form of the Compton
profile, and the atomic momentum distribution. This gives an opportunity to compare results
of experiments with predictions of realistic theoretical models of microscopic properties.

As the name suggests, neutron Compton scattering is closely related to experimental
techniques in other branches of physics [1]. Compton scattering [2–4], i.e. inelastic
scattering of x-rays, gamma rays or (10–60 keV) electrons provides information on electron
momentum distributions, an example being the direct observation of the Fermi–Dirac
distribution for conduction electrons in metals. In nuclear physics, an established technique
for probing the momentum distribution of nucleons in nuclei is deep inelastic scattering
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[5, 6] of protons or electrons with energies of 100–1000 MeV and de Broglie wavelengths
of the order of nuclear radii. At still higher energies (10 GeV and above), deep inelastic
scattering of electrons, muons or neutrinos [7–9] probes the internal structure of nucleons
and has been a key experiment in the confirmation of the existence of quarks. By analogy
with these techniques, neutron Compton scattering is sometimes called deep inelastic neutron
scattering.

Neutron Compton scattering was first suggested [10] as a technique for measuring of
the condensate fraction in superfluid4He, and this has been an active field for three decades
(see [1, 11, 12] and references therein). Recently, the development of spallation neutron
sources, which have much higher intensities than reactor sources in the incident energy
range required for neutron Compton scattering, have opened up new applications. Recent
experiments include studies of condensed noble gases [13–16], metals [17, 18], normal
liquid 4He [16, 19–21], liquid3He [22], solid4He [21], superfluid3He–4He mixtures [23],
and molecular hydrogen and deuterium [24–27].

The extreme momentum transfers now experimentally reachable imply that, in some
cases, the corrections to the impulse approximation are essentially negligible. This suggests
the possibility of direct and model-independent extraction of momentum distributions from
Compton profiles, in contrast to the usual approach of fitting theoretical predictions to the
experimental profiles. Though its feasibility has not yet been demonstrated in practice, this
approach, if successful, could establish neutron Compton scattering as the only technique
capable of measuring atomic momentum distributions directly. A particularly interesting
case is where the motion of the atom of interest is well described by an effective (Born–
Oppenheimer) potential, or adiabatic energy surface. An example is a proton bound in
a heavy lattice. In this case, the momentum distribution is the squared amplitude of the
Fourier transform of the proton wave function, and from it, the potential energy function
can be extracted [28, 29].

The information obtainable in neutron Compton scattering is to some extent
complementary to that from diffraction experiments. The former measures the Fourier
transform of atime-averageddensity; the latter theinstantaneousmomentum density. Thus,
for example, a neutron Compton scattering experiment on protons in a double-well potential
of a hydrogen bond [28, 29] could, in principle, distinguish between a wave function with
amplitude in both wells, and a statistical mixture of states in which the proton is localized
in one well or the other.

This article aims to summarize the theoretical framework for the interpretation of neutron
Compton scattering experiments, with an emphasis on applications to solids. A thorough
discussion of the physical principles underlying the impulse approximation is given in
section 2, based on the central concept of the scattering time. Section 3 addresses the
problem of extracting information from the Compton profile. In the final section we discuss
briefly the potential of the direct inversion approach. Although some examples are drawn
from published experimental studies, no attempt is made here to review current experimental
activity. For further background material, see [30, 31].

2. The impulse approximation

We begin with an expression for the quantity which is measured in experiments, namely
the partial differential cross-section for the scattering of a beam of neutrons by a collection
of atomic nuclei. Although the nucleon–nucleon interaction is very strong, it is sufficiently
short-ranged that the scattering is a weak perturbation of the incident wave. Therefore,
with the aid of a Fermi pseudopotential, the scattering may be described in the first Born
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approximation, and as a consequence the cross-section depends only on the changes in
energy and wave vector of the neutron. We shall denote these by

h̄ω = h̄2

2m
(k2 − k′2) and Q = k − k′ (1)

respectively, wherek andk′ are the incident and scattered neutron wave vectors. A second
simplifying assumption appropriate in the case of neutron Compton scattering is that the
spatial scale of the scattering event, set by 1/Q, is too small for one to detect correlations
between the positions of different nuclei, and hence that the scattering may be described to
a good approximation as incoherent. This approximation is particularly good for scattering
from protons, where the incoherent cross-section is larger than the coherent cross-section
by almost two orders of magnitude. Under these circumstances the contribution to the
scattering cross-section from nuclei of a particular species is proportional to the response
function [32]

Si(Q, ω) = 1

2πh̄

∫ ∞

−∞
dt e−iωt

∑
j

Yj (Q, t) (2)

where

Yj (Q, t) = 〈e−iQ·Rj eiQ·Rj (t)〉 (3)

is the density–density correlation function corresponding to the nucleus of atomj , whose
position is represented by the quantum mechanical operatorRj . The correspondingRj (t)

has a time dependence in the Heisenberg representation of

Rj (t) = eiHt/h̄Rj e−iHt/h̄. (4)

The angular brackets in equation (3) denote a thermal average of the enclosed expression,
as well as an implicit average over degrees of freedom which are passive in the scattering
process, such as nuclear spin and neutron polarization states.

The physical content of the response function can be made more transparent by passing
to a somewhat less general expression. The thermal average in equation (3) involves, in
principle, a sum over expectation values with respect to the complete set of stationary
quantum states of the many-body Hamiltonian describing the nuclei and other particles,
and their interactions. Let us suppose that the motion of a particular nucleus can be
represented by an effective single-particle Hamiltonian which describes its interaction with
its environment, and a corresponding set of single-particle states. We have in mind the
case of a nucleus bound in a molecule, where an effective potential is constructed using
the Born–Oppenheimer scheme. Let us denote the effective single-particle states by|n〉
and their energies byEn. The contribution to the response function from a single nucleus
reduces to

Si(Q, ω) =
∑
nn′

Z−1e−En/kBT |〈n|e−iQ·R|n′〉|2δ(h̄ω − (En′ − En)) (5)

whereZ is a normalization factor (the thermodynamic partition function). In this expression
we may recognize a sum over transitions from initial statesn, weighted by a thermal
Boltzmann factor, to final statesn′, of a transition probability. The latter is given by
Fermi’s golden rule as the product of a squared matrix element and an energy-conserving
delta function. The scattering is represented by the operator e−iQ·R which couples the plane
wave of the neutron with the position of the nucleus.

Returning now to the general expression, equation (2), the form of the response
function as a sum of separate contributions from each nucleus reflects the nature of the
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incoherent approximation, which neglects correlations between different nuclei. The impulse
approximation, which is the main topic of this section, consists in a similar neglect oftime
correlations in the motion. To be specific, if the time-scale of the scattering event is much
shorter than the characteristic time of atomic motions in the sample, then the nuclei may be
regarded as free particles in so far as the scattering probability is concerned. As a result, the
latter depends only on the momentum of the nucleus in its initial state. Crudely speaking,
then, we may summarize the approximations appropriate for neutron Compton scattering
as follows: the Born approximation, that each neutron scatters only once; the incoherent
approximation, that each scattering process involves only one nucleus; and the impulse
approximation, that the neutron remains in the vicinity of the nucleus for a time too short
to sense anything except how fast the nucleus is moving. This last approximation is the
most subtle of the three, and it will be discussed in detail now.

2.1. The short-time expansion

Motivated by the idea that only short times are relevant, let us suppose that the correlation
function Y (Q, t) for a single nucleus is dominated by its behaviour for smallt . The time-
dependent Heisenberg operatorR(t) has the Taylor expansion

R(t) = R + (P /M)t + 1
2(F /M)t2 + · · · (6)

whereP = MṘ = iM[H, R]/h̄ is the momentum of the struck nucleus which has mass
M, andF is the force defined similarly. All of the operators in the expansion are evaluated
at t = 0. We remark that the identification ofMṘ with momentum is valid only in the
absence of velocity-dependent forces, i.e. it is assumed that there are no magnetic fields
present, and that the motion of the nucleus is non-relativistic.

Reserving for later the question of the precise criteria for validity of the present
mathematical procedure, let us examine the form of the response function resulting from
the neglect of terms of ordert2 and higher. This amounts to an assumption that the struck
particle is effectively free so thatF = 0. With the aid of the operator identity

eA+B = eAeBe−(1/2)[A,B] (7)

which holds when [A, B] commutes with bothA andB, the correlation function is found
to reduce to

Y (Q, t) = 〈ei(Q·P /M+ωR)t 〉 (8)

where ωR = h̄Q2/2M is the (free-atom) recoil frequency. The exponent has an
interpretation in terms of the kinematics of a neutron–nucleus collision. If the momentum
of the nucleus isP before the collision, then it isP + h̄Q after the collision, and energy
conservation requires

ω = [(P + h̄Q)2 − P 2]/2Mh̄ = Q · P /M + ωR. (9)

In particular, h̄ωR is the energy imparted to a stationary nucleus by a collision with a
neutron.

If the nucleus were indeed at rest before the scattering, equation (8) would give
Y (Q, t) = eiωRt , and the response function would consist of a delta-function line at the
recoil frequency. In fact, the nucleus will be in a quantum state having a distribution of
initial momenta, and the line will therefore be Doppler broadened. Each possible initial
momentum results in a contribution to the scattering intensity at a frequency given by the
conservation constraint, equation (9). Specifically, defining the momentum distribution by

n(q) = 〈δ(q − P /h̄)〉 (10)
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the response function in the impulse approximation is

Si(Q, ω) = h̄−1
∫

n(q)δ(ω − h̄Q · q/M − ωR) dq. (11)

This result, that the scattering cross-section is directly related to the momentum distribution
of the struck nuclei, is of central importance in neutron Compton scattering experiments.

It is important to emphasize that, although it represents a single-particle response, the
momentum distributionn(q) is actually a property of the many-body system of all of the
nuclei and their interactions. In other words, the momentum distribution of a single nucleus
depends on its environment and therefore on the behaviour of the system as a whole. Let us
examine again the special case where the motion of a nucleus is given by a set of effective
single-particle states|n〉. Here, equation (10) becomes

n(q) = (1/2π)3
∑

n

Z−1e−En/kBT

∣∣∣∣∫ e−iq·r〈r|n〉 dr

∣∣∣∣2

. (12)

At zero temperature, this reduces to the square modulus of the Fourier transform of the
ground-state wave function. Thus, there is a direct relationship between the measured
quantity,Si(Q, ω), and the quantum mechanical wave functions of the nuclei in the sample.

2.2. The scattering time

Looking at the short-time expansion of the nucleus’s position operator, equation (6), we see
that the first term neglected in the derivation of the impulse approximation is proportional
to the operatorF representing the force experienced by the nucleus. Denoting root mean
square values by an overbar, the corrections are expected to be small if

F · Q τs � P · Q (13)

where τs is a quantity with the dimensions of time, identified as the time-scale of the
scattering process, orscattering time. At first sight, it might appear reasonable to relateτs

to the time taken for a neutron wave packet to pass the vicinity of the nucleus. The corollary,
that the degree of coherence of the neutron beam plays a role in deciding the validity of
the impulse approximation, is largely erroneous, as will be demonstrated presently.

To establish the significance of the scattering time, let us adopt the operational point
of view that, since the aim is to approximate the correlation functionY (Q, t), the relevant
time-scale should be obtained fromY (Q, t) itself. The response functionSi(Q, ω), as we
have seen, consists in general of a peak centred at the recoil frequencyωR, with a certain
width 1ω. It follows that the general form ofY (Q, t) is of an oscillatory function eiωRt ,
modulated by a decreasing envelope of width 1/1ω (figure 1). The fact thatY (Q, t) goes to
zero confirms our expectation from physical arguments that knowledge of the struck atom’s
motion for a limited time span is sufficient to predict the scattering response. Accordingly,
we identify the scattering timeτs as the time-scale for the decay of the correlation function
Y (Q, t) to zero, which equals 1/1ω, the reciprocal of the recoil peak width [12]. If it
happens thatSi(Q, ω) is highly structured, i.e. has features on several frequency scales,
this means thatY (Q, t) depends on more than one characteristic time. The overall decay
envelope is determined by the longest of these characteristic times, and it follows thatτs is
the reciprocal of the width of thenarrowestfeature inSi(Q, ω).

Strictly speaking, for scattering from solids the correlation functionY (Q, t) does not go
to zero, but to|〈eiQ·R〉|2, corresponding to the amplitude of the elastic line inSi(Q, ω) [32].
However, this constant component does not affect the argument: since we are interested



5960 G I Watson

Figure 1. The schematic form of the correlation functionY (Q, t), whose Fourier transform
is proportional to the neutron scattering cross-section. The frequency of the oscillations is the
reciprocal of the recoil frequency of the scatterer, and the amplitude falls off on a scale of the
scattering timeτs .

in the scattering at energies nearω = ωR, we may discard the elastic scattering and take
Y (Q, t) to consist only of the inelastic part, which tends to zero as described.

With τs defined in terms of the structure of the response function, a rigorous
determination requires, in principle, a detailed calculation ofSi(Q, ω) for the system of
interest. In the absence of a detailed theory, some rough estimates can be made. A
convenient procedure is to estimateτs self-consistently using the impulse approximation
itself. We take forSi(Q, ω) a peak centred onωR of width 1ω. According to equation (11),
1ω is proportional to the width of the distribution ofPQ, the projection of momentumP
along the direction ofQ, and thus

τs ∼ M

Q〈P 2
Q〉1/2

. (14)

The inverse dependence of the scattering time onQ is an essential feature. It implies that,
as anticipated on physical grounds, the impulse approximation becomes exact in the limit of
large wave-vector transfer. This statement is true provided that the forces on the nuclei are
always finite, for ifF can grow arbitrarily large the condition in equation (13) is not satisfied
no matter how short the scattering time. We shall therefore not consider pathological cases,
such as scattering from a ‘hard-core’ fluid [33] or from a particle undergoing Brownian
motion [34], where corrections to the impulse approximation do not become negligible as
Q → ∞.

With our estimate, equation (14), for the scattering time, the criterion for validity of the
impulse approximation reads

FQ(1/Q) � 〈P 2
Q〉/M (15)

whereFQ = F · Q/Q is the projection of the force onto the direction ofQ. This has
the following interpretation. If 1/Q is regarded as the length scale of the scattering event,
it is required that the work done by the forceFQ in moving the nucleus this distance
be negligible compared with the root mean square kinetic energy of the nucleus due to
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motion alongQ; in other words, forces on the nucleus do not change its energy appreciably
during the scattering process. This feature of impulsive scattering is reflected in the energy-
conserving delta function in equation (11), which would otherwise involve a contribution
from the nucleus’s change in potential energy.

An alternative discussion of the short-time expansion can be made within the framework
of the Gaussian approximation for incoherent scattering [35], in which the correlation
function is written asY (Q, t) = exp[−Q2w(t)], with the width functionw(t) proportional to
the mean square displacement of the atom at timet . The impulse approximation is obtained
in an asymptotic analysis by expansion ofw(t) about a saddle point in the complex plane.
The correction terms may be estimated in terms of the moments ofSi(Q, ω), and are small
if the ‘skewness’ of the recoil peak, related to the third moment, is small. The condition for
validity of the impulse approximation obtained in this way is equivalent to equation (15).

2.3. Bound nuclei

The preceding derivation of the conditions for validity of the impulse approximation is not
rigorous, in that the use of the impulse approximation to predict its own range of validity
is a circular argument. An example in which the reasoning fails is that of scattering from
a nucleus bound in a harmonic potential. This example will now be treated in some detail.
It will lead us to extend somewhat the concept of scattering time, and will serve as an
introduction to a general discussion of scattering from nuclei bound in solids.

For the harmonic oscillator,Si(Q, ω) can be calculated without approximation [32]. It
will be sufficient for our purposes to examine the case of zero temperature, for which the
exact result is

Si(Q, ω) = h̄−1e−ωR/ω0

∞∑
n=0

[(ωR/ω0)
n/n!] δ(ω − nω0). (16)

The prediction of the impulse approximation is

S IA
i = (2πh̄2ω0ωR)−1/2 exp

[
− (ω − ωR)2

2ω0ωR

]
(17)

and the self-consistent estimate of its range of validity, from equation (15), isωR � ω0.
The two functions are compared in figure 2 forωR/ω0 = 15. The exactSi(Q, ω) is an array
of infinitely sharp lines, whereas the impulse approximation result is a smooth Gaussian,
drawn as a dashed curve. The impulse approximation fails spectacularly to reproduce the
fine structure of the spectrum.

As is evident from the general expression, equation (5), for the response function in
terms of single-particle states, the source of the problem is energy quantization. Each sharp
line represents the absorption of a number of quanta by the oscillator. SinceSi(Q, ω)

contains infinitely narrow structure, the scattering time, as defined above, is infinite, and
the short-time expansion fails.

Not all is lost, however. Evidently, the impulse approximation does give an accurate
account of theenvelopeof the palisade of delta functions. The agreement improves on
increasingQ. In other words, the impulse approximation describesSi(Q, ω) on a frequency
scale large compared withω0. In practice, such a coarse description is likely to be adequate.
For nuclei bound in molecules or solids, even if broadening mechanisms intrinsic to the
system (discussed below) are insufficient to smear out structure on a scale ofω0, achieving
the instrumental resolution needed to discern the separate lines would most likely be a
difficult task, with an incident energy large enough to accomplish the experiment.
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Figure 2. Solid vertical lines: the response function for scattering from a nucleus bound in an
ideal harmonic well of frequencyω0 (each delta-function contribution is plotted as a vertical
line of height equal to the corresponding weight). The momentum transferQ is such that the
recoil frequencyωR is 15ω0. Dashed curve: the same quantity as predicted by the impulse
approximation.

The ability of the impulse approximation to describe the envelope of the discrete
spectrum is not restricted to the ideal oscillator. The generalization to arbitrary potential
wells is straightforward [36]. At zero temperature, equation (5) is

Si(Q, ω) =
∑

n

|〈0|e−iQ·R|n〉|2δ(h̄ω − (En − E0)). (18)

The scattering intensity is concentrated at values ofω = (En − E0)/h̄ for which the
matrix element is large. Now, the essence of the impulse approximation is that the
momentum transfer, and hence the energy transfer, is so large that the nucleus’s final state
is approximately that of a free particle, a plane wave. Substituting a final state eiq′·R with
En = h̄2q ′2/2M into equation (18) yields [37]

Si(Q, ω) =
∫

n(q)δ[h̄ω − h̄2(Q + q)2/2M + E0] dq (19)

wheren(q) is the momentum distribution defined previously in equation (12). For eachq
there is a contribution toSi(Q, ω) at a position relative to the recoil frequency

ω − ωR = h̄Q · q/M + h̄q2/2M − E0/h̄. (20)

For sufficiently largeQ, the first term dominates the others on the right-hand side, and
hence equation (19) is essentially identical to the impulse approximation derived using the
short-time expansion.

In this re-derivation of the impulse approximation, three approximations were made.
The first was the replacement of the final state by a plane wave in the evaluation of the
matrix element in equation (18). Clearly it is sufficient that this approximation be accurate
in the region of space where the ground-state wave function is appreciable, near the centre
of the potential well. That this is indeed the case follows from the ideas of the WKB
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approximation [38], in which the wave function of a bound state is written as a standing
wave with a local wave vectorq ′(x) = [2M(En −V (x))/h̄2]1/2. The impulse limit requires

V (x) � En (21)

within the spatial extent of the ground state, since thenq ′(x) is approximately independent of
position. In addition, to ensure that the WKB wave function is a reasonable approximation
of the excited state we require the fractional change inq ′(x) over one wavelength 2π/q ′

to be small [38]. In the present context this requires dV/dx � q ′En, which is a weaker
constraint than equation (21).

The second approximation made in re-deriving the impulse approximation was ignoring
the discreteness of the spectrum of final states. That is, the sum in equation (18) was replaced
by an integral over all momenta. It is here that the delta-function structure ofSi(Q, ω) is
lost, and the procedure is therefore justified if our aim is to calculate the envelope of the
spectrum.

The final approximation was the neglect of the second and third terms of equation (20).
SinceE0 − h̄2q2/2M is, on average, the potential energy in the ground state, we obtain the
condition

〈V 〉 � h̄Q〈P 2
Q〉1/2/M. (22)

This is evidently a stronger condition than equation (21) since the right-hand side increases
only linearly withQ. Hence, if equation (22) is satisfied, all of the approximations leading
to the impulse approximation are justified.

The condition may be expressed in terms of the forces on the atom by noting that
F = −∇V . If F̄ represents the root mean square force in the ground state, which has a
spatial extent of order ¯h/〈P 2〉1/2, then the ground-state potential energy is approximately
h̄F̄ /〈P 2〉1/2. Inserting this estimate in equation (22) and ignoring any dependence on the
direction of Q yields F̄ � Q〈P 2〉/M, in agreement with the self-consistent estimate,
equation (15).

We conclude that the short-time expansion, and the associated self-consistent assessment
of its validity, are adequate for scattering from a bound nucleus, provided that we are
satisfied with a description of the envelope ofSi(Q, ω). In this context, it is appropriate
to define the scattering timeτs as the inverse width of the narrowest envelope, which is
the time-scale of processes during scattering which determine the broad structure of the
response function.

The present discussion has considered atoms bound in potentials with infinitely high
walls. In practice, of course, a sufficiently large impulse will eject the atom from the
molecule or lattice which binds it. It has been suggested in the literature that the impulse
approximation is valid only when the recoil energy is large compared with the binding
energyEB . This is indeed the condition necessary for the scattering response to be a
smooth function as the impulse approximation predicts, rather than an array of narrow
lines. However, the conclusion of this section is that there is an intermediate energy range,
ω0 � ωR < EB/h̄, in which the impulse approximation provides an accurate description of
the envelope of the response function.

2.4. Solids

We turn now to the subject of scattering from nuclei bound in a lattice, in which motions of
different nuclei are coupled. In other words, we wish to generalize the preceding discussion,
which treated lattice vibrations as a collection of independent oscillators (i.e. in an Einstein
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model), to a situation where the vibrational modes are collective in nature. We aim to provide
qualitative estimates for the range ofQ for which the impulse approximation is an accurate
description of the response function. The task of applying the impulse approximation
in detailed calculations for particular model systems will not be attempted here; see, for
example [32] and [39].

The first point to be made is that the picture ofSi(Q, ω) as an array of delta-function
lines is no longer appropriate when atomic vibrations are coupled. The reason is simply
that final states excited by the scattering are drawn from a continuous distribution, namely
the phonon density of states, rather than from a set of quantized levels as for the oscillator.
To be specific, let us consider a perfect harmonic lattice, at zero temperature. Referring to
equation (18), the final states are now taken to be excited states of the lattice as a whole,
rather than single-particle states. It is convenient to group together terms with a given
number of phonons excited. The leading term, then, hasω = 0 and yields a delta-function
elastic line just as for the harmonic oscillator. The one-phonon contribution, however, is
not a sharp line but a continuous distribution proportional to the phonon density of states
Z(ω). Explicitly [32, 39],

Si(Q, ω) = e−2W(Q) {δ(ω) + (ωR/ω)Z(ω) + · · ·} (23)

where e−2W(Q) is the Debye–Waller factor. Continuing the series, the two-phonon term is
the product of a matrix element e−2W(ωR/ω)2 and the two-phonon density of states:∫ ∞

0
Z(ω′)Z(ω − ω′) dω′ (24)

which is the convolution ofZ with itself. Higher terms in the phonon expansion are
proportional to repeated self-convolutions ofZ, and therefore become progressively broader
and smoother. IfQ is large, by the time energy transfers of the order of the recoil energy are
reached, the number of phonons excited is so large that the central limit theorem applies and
the n-phonon density of states is essentially Gaussian. The different contributions merge
to form a smooth recoil peak. These features are illustrated in calculations by Mayers,
Andreani and Baciocco [40] using a Debye model, and by Evanset al. [41] and Fieldinget
al [42] using realistic densities of states for ZrH2 and ZrD2.

The smoothing effect of the continuous distribution of phonon states is a ‘de-phasing’
effect, i.e.Y (Q, t) decays because the spread in frequencies causes a loss of coherence over
time. This is to be contrasted with decay of correlations due to damping mechanisms. The
latter are a consequence of interactions of phonons with impurities, with electrons, and with
each other (due to anharmonicity), resulting in a finite phonon lifetime. Such effects may
be included in equation (18) by replacing the delta function by a peak of width equal to the
inverse phonon lifetime.

The effects of finite temperature are to broaden the scattering response still further. They
enter through both de-phasing and damping mechanisms: the former because of thekBT

spread in initial energies, the latter because the phonon lifetime is a decreasing function of
temperature.

Let us summarize the various energy scales that have arisen in our discussion so far.
The characteristic frequency of the phonons is the Debye frequencyωD, corresponding to
an energy scale typically of the order of a few hundred kelvin. For low temperatures,
kBT � h̄ωD, the mean kinetic energy per atom,EK , is of order 3h̄ωD/4, while for high
temperatures it approaches the classical value 3kBT /2. The lifetimeτ of phonons is related
to the thermal conductivity of the solid byK = Cv2/3τ , whereC is the heat capacity
and v is the sound velocity [43]. Inserting representative values leads to an estimate that
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the lifetime broadening ¯h/τ is typically 1 K or less, and hence negligible in comparison to
other energy scales in the system.

The energy scales related to the scattering process are the recoil energy ¯hωR, typically
in excess of 1 eV, and the width1ω of the recoil peak. These are the scales which
determine the applicability of the impulse approximation. In view of the smoothing effect
of the continuous phonon density of states, we judge that the self-consistent criterion for
the validity of the impulse approximation is appropriate. In order to apply it, we require
an estimate of the forces on an atom. For a harmonic oscillator, the mean square of one
Cartesian component of the force isM2ω4

0〈x2〉 = 2Mω2
0EK/3, and thus for a harmonic or

nearly harmonic solidFQ is of the order of(Mω2
DEK)1/2. The criterion for validity of the

impulse approximation becomes

Q � (Mω2
D/EK)1/2 ∼ (MωD/h̄)1/2 (25)

where the second estimate is valid for temperatures low compared with the Debye
temperature. The quantity on the right is the inverse of the root mean square displacement of
a harmonic oscillator of frequencyωD/2. Thus, the criterion for the impulse approximation
is more easily satisfied if the atoms are weakly bound, as one would expect. As remarked
previously [28, 40], Debye frequencies do not depend strongly on atomic mass, and hence
the Q-value required to reach the impulse limit should increase with mass asM1/2.

Neutron Compton scattering investigations of monatomic solids reported recently
include experiments on argon, krypton and xenon [13, 14], lithium [17], sodium [18] and
4He [21]. To take a representative example, lithium [17] has a mass of 7 a.m.u. and a
Debye temperature of approximately 400 K, yielding the criterionQ � 8 Å−1 for the
impulse limit. For Q ∼ 100 Å−1, the highest used in the experiment cited, the recoil
frequencyωR ∼ 3 eV, and the recoil peak width1ω is about 0.3 eV.

These considerations are readily generalized to more complicated systems. An example
is the hydrogen molecule, which has been the subject of recent experiments [24–27].
In this system the binding of protons within an H2 molecule is much stronger than the
forces between molecules. The mismatch of energy scales is reflected in the spectrum of
vibrational states, which is envisaged as consisting of two bands: a broad acoustic band,
corresponding to molecular motions characterized by the Debye frequencyωD, and a narrow
high-frequency band centred at the intramolecular vibrational frequencyωV . The width of
the narrow band is of the order ofω2

D/ωV . In H2, ωV is nearly two orders of magnitude
greater thanωD, and the molecular and intramolecular motions are effectively decoupled.
The characteristics of the scattering are thus dominated by the intramolecular vibrations,
and in fact Mayers [24] found the scattering from liquid H2 to be indistinguishable from
that from the polycrystalline solid. In the low-temperature limit (kBT � h̄ωV ) appropriate
here, the criterion for validity of the impulse approximation isQ � (MωV /h̄)1/2 ∼ 10
Å−1, well within the experimental range.

Similar arguments apply for scattering from light atoms in a heavy lattice [44], such as
the proton in KHCO3 [45]. Here the proton vibrational modes are found in a high-frequency
band, narrower than the acoustic band by approximately(M1/M2)

1/2, and are effectively
decoupled from other motions because of the large mass ratio.

2.5. Liquids

The case of scattering from liquids is the most well developed and, at the same time, the
most controversial, application of the impulse approximation. Here we restrict ourselves to
a few general remarks; details may be found elsewhere [10, 11, 47–57].
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For a monatomic classical liquid, such as a condensed heavy noble gas [13], the
application of the impulse approximation appears straightforward. For example, taking
order-of-magnitude values for the force between atoms in the liquid near its triple point,
〈F 2〉1/2 ∼ 103 K Å−1 [13], and the kinetic energyEK = 3kBT /2 in the range 200 to 400 K,
we obtain an estimateQ � 5 Å−1 for the impulse limit to be reached. Indeed, in the
experiments cited, deviations from the impulse approximation were observed to be small at
momentum transfers between 17 and 29Å−1.

The situation appears to be not very different for most monatomic quantum fluids,
except, of course, that the evaluation of the kinetic energy must take account of the quantum
zero-point motion of the atoms. Examples of recent experiments on normal liquids in
which quantum effects are important include studies of4He [16, 19–21],3He [22] and neon
[15, 16].

One way to estimate orders of magnitude is to use a ‘cell model’ of the liquid, in
which, on short time-scales, an atom is assumed to move in a roughly spherical cage
created by neighbouring atoms, with intermolecular potentials of, say, Lennard-Jones form.
For example, Andreaniet al [20] have argued that such a model, with the total interatomic
potential represented by an effective harmonic vibrational frequencyω0 = 14 K, accounts
reasonably well for the observed temperature dependence of the mean kinetic energy of
normal liquid 4He.

Assuming that the same model suffices to estimate the forces on an atom, we find that
Q � (Mω0/h̄)1/2 ∼ 1 Å−1 is the condition for the impulse approximation to be accurate.
In fact, this type of estimate is highly misleading. The impression that the impulse limit is
attained for rather lowQ results from the low mass and the fact that the attractive part of
the Lennard-Jones potential is very weakly binding. However, the experience gained from
a variety of theoretical and experimental investigations over the past few decades (see [11]
and references therein) has shown that the repulsive ‘hard-core’-like part of the interatomic
potential is crucial in determining the validity of the impulse approximation. Indeed, as
mentioned previously, for a true hard-core fluid the impulse limit is not reached no matter
how large the momentum transfer [33].

For the most extreme example of a quantum liquid,4He in its normal and superfluid
phases, the work of Silver [54–56] is a definitive theoretical study of corrections to the
impulse approximation. Its conclusion is that, although the correction terms in a formal
expansion ofSi(Q, ω) asQ → ∞ are proportional to powers of 1/Q [49], the nearly hard-
core nature of the interactions results in a broad range of crossover to the asymptotic limit,
in which the corrections scale as logQ. As a result, the corrections are not negligible, even
for the highestQ-values that might conceivably be attained in experiments. Silver’s work
also provides a systematic method of calculating the corrections, which has been applied
successfully in measurements of the condensate fraction in superfluid helium [57].

For non-monatomic liquids, there are complicating (and interesting) features arising
from the internal structure of the molecule. Recent work includes experiments on molecular
hydrogen and deuterium [24–27].

2.6. Corrections to the impulse approximation

Deviations of the response functionSi(Q, ω) from the prediction of the impulse
approximation are often collectively termed ‘final-state effects’, since they result from
deviations of the final state of the scattering process from plane-wave form. In fact, since
Si(Q, ω) reflects properties of initial as well as final states, and deviations arise from both
sources [37, 40], we shall refer simply to ‘corrections to the impulse approximation’.
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In general, the corrections take the form of a broadening of the response function; this
is in part an effect of a finite lifetime of the final state, due to collisions of the struck
atom with its neighbours [10]. An example is the broadening effect of the phonon lifetime
discussed in section 2.4. The corrections are frequently embodied in a ‘final-state resolution
function’, which is convolved with the result of the impulse approximation to obtain the
predicted Compton profile.

When deviations from the impulse approximation are appreciable, accurate calculations
of the final-state resolution function require a detailed theory of interactions in the system
under study. An example is the hard-core perturbation theory [50–52] for normal and
superfluid4He, which is a quantum many-body theory of the fluid incorporating scattering
data for the helium interatomic potential. Here, we shall not enter into details of such
calculations, but make a few general comments, principally aimed at the case of scattering
from solids for which the corrections are small.

Let us recall the approach taken in section 2.3 and [36], where the impulse approximation
was derived under three assumptions: that the final state is nearly a plane wave, that the
discreteness of the final-state energies is unimportant, and that the last two terms in the
energy conservation condition, equation (20), may be neglected. The last assumption, that

E0 ≈ h̄2q2/2M (26)

is exactly true only for a free-particle system. Mayers [37] has termed the deviations from
equation (26) ‘initial-state effects’. Here we focus on the fact that, as mentioned previously,
equation (26) is the strongest of the three approximations made, and therefore if we relax
it, the result is likely to be a better approximation than the impulse approximation. For
example, if the final-state energyEn is set equal to its WKB estimate ¯h2q2/2M + V (x),
and if E0 − V (x) is replaced with its average value, namely the mean kinetic energyEK ,
one obtains

Si(Q, ω) =
∫

n(q)δ[h̄ω − h̄2(Q + q)2/2M + EK ] dq (27)

which is a result first suggested by Stringari [58]. It is a better approximation than the
impulse approximation at low temperatures, but becomes less useful at higher temperature,
since the replacement of a distribution of energies by an average ceases to be valid [40].

The Stringari formula shows that one aspect of the corrections to the impulse
approximation is a shift of the maximum of the recoil peak to lower frequency. Such
a shift is indeed visible in figure 2, for example. In addition, the corrections induce an
asymmetry in the peak. This suggests that a straightforward symmetrization of the data can
be used to remove partially deviations from the impulse approximation. In the Sears [49]
method, symmetrization is the first step in a systematic self-consistent correction procedure.
The method is based on a formal asymptotic expansion ofSi(Q, ω) in powers of 1/Q,
in terms of successive moments of the final-state resolution function. It is found that
symmetrization of the measured recoil peak eliminates corrections of orderQ−1, leaving
residual terms of orderQ−2. The antisymmetric part ofSi(Q, ω) is proportional toQ−1 and
amounts to a measurement of deviations from the impulse approximation; this information
can then be used to correct for the residual deviations in the symmetrized data, and the
result is a response function corrected up to orderQ−2. Comparisons of correction methods
for experimental data on bound light atoms have been made by Evanset al [41] and by
Fielding et al [42].

An analysis method recently developed by Glyde [59], also based on moment
expansions, aims to extract both the limiting impulse approximation response function, and
measurements of the finite-Q corrections, from experimental neutron Compton scattering
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data. In this approach, rather than concentrating on extreme momentum transfers in order to
minimize deviations from the impulse approximation, one collects data over a broad range
of Q. It is the measurable difference in theQ-dependence of various contributions to the
expansion moments that allows theQ → ∞ (impulse approximation) component of the
data to be isolated, and the corrections to be estimated. This technique has been applied in
a recent study of normal liquid4He and liquid neon [16].

3. The Compton profile

In this section we turn to the problem of extracting information about the momentum
distribution from measured data. We shall take the approach [28, 29] of assuming that the
impulse approximation is accurate. As we have seen, this assumption is justified in the case
of scattering from solids, where the impulse limit is well within the experimental range of
momentum transfers and where leading-order ‘final-state’ corrections can be handled, for
example, by symmetrization of the data.

The measured response functionSi(Q, ω) is given in the impulse approximation by
equation (11). Let us defineJ = (h̄2Q/M)Si and rearrange the delta function to give

J =
∫

n(q)δ(q · Q̂ − y) dq (28)

whereQ̂ is the unit vector alongQ, and

y = (M/h̄Q)(ω − ωR). (29)

This form of Si(Q, ω) has an important consequence. Consider an isotropic system, where
the scattering is independent of the direction ofQ. ThenJ depends only on the variabley,
rather than onQ andω independently. In other words, the data ‘collapse’ onto a function
J (y) of a single variable. This phenomenon is known asy-scaling, andJ (y) is termed the
Compton profile. It is seen from the delta function in equation (28) thaty is the projection
of the atom’s momentum onto the scattering vector.

The functionJ (y) is a convenient and standard form for experimental results to be
presented in. The recoil peak is shifted to be centred aty = 0, and if the profile is
normalized to unity the mean kinetic energy per atom is directly related to the second
moment of the Compton profile by

EK = (3h̄/2M)

∫ ∞

−∞
y2J (y) dy. (30)

This result follows from the general moment relations for the incoherent response function
[32].

For an anisotropic system such as a single crystal, the response function depends on
the direction ofQ as well as ony, and one then speaks of the directional Compton profile,
J (Q̂, y). It has a second moment related to the kinetic energy associated with motion along
Q̂.

3.1. Reconstructing momentum distributions

The Compton profile and the momentum distribution are related by equation (28). Consider
J (Q̂, y) as a function ofy for fixed Q̂, and define a coordinate systemxyz such thatQ̂
points along thez-axis. Then

J (Q̂, y) =
∫

n(qx, qy, y) dqx dqy. (31)
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The Compton profile is seen here to be the integral ofn(q) over a plane normal to the
vector Q̂, i.e. a projection of the momentum density onto the direction of the momentum
transfer. This mathematical relationship betweenJ (Q̂, y) and n(q) is known as a Radon
transform [60]. An important property of the transform is that it is invertible: given the
directional Compton profile for all values of its arguments, the momentum distribution can
be extracted.

The Radon inversion formula can be expressed in many mathematically equivalent
forms, but these are not equivalent in practice, when the data are finite and affected by
noise and instrumental resolution. The reconstruction problem for the Radon transform,
and the associated mathematical questions of stability, uniqueness, accuracy and resolution,
have been studied thoroughly in connection with computerized tomography in diagnostic
radiology [61]. We note, in passing, that the Radon transform can be expressed in the
framework of wavelet theory [62], but the consequences, if any, for the reconstruction
problem do not appear to have been explored. Here we describe a reconstruction method
proposed by Reiter (see [28, 29]) based on the work of Davison and Grunbaum [63, 64],
which is a variant of the ‘filtered back-projection’ technique in common use in medical
applications of tomography.

The method involves decomposing the angular (Q̂-) dependence of the data into
spherical harmonics, and they-dependence into products of Gaussian and Hermite functions.
Specifically,

J (Q̂, y) = π−1/2e−(y/y0)
2
∑
nlm

AnlmH2n+l(y/y0)Ylm(Q̂) (32)

whereYlm are the usual spherical harmonics, as defined, for example, in [38]. The constant
y0 is chosen to match the width of the Compton profile. As may be proved by direct
integration [29], this series is the Radon transform of

n(q) = π3/2e−(q/y0)
2
∑
nlm

Bnlm(q/y0)
lLl+1/2

n (q2/y2
0)Ylm(q̂) (33)

where

Bnlm = (−1)n22n+ln!Anlm. (34)

Here H and L are Hermite and Laguerre polynomials, with the standard normalization
[65] that the coefficient ofxm in Hm(x) is 2n, and the coefficient ofxm in Lα

m(x) is
(−1)n/n!. The method is thus to determine the{A}-coefficients from the data, to generate
the {B}-coefficients using equation (34), and finally to obtain the reconstructed momentum
distribution in the series form in equation (33).

Two properties of this inversion method make it particularly suitable for application in
neutron Compton scattering. The first is that instrumental resolution is readily accounted for
by including the resolution function in the fitting process used to extract theA-coefficients.
In other words, the functions actually used to fit the data are the convolutions of those
on the right-hand side of equation (32) with the instrumental broadening function. The
second desirable property is that the expansion functions are very well matched to the
characteristics of the data. Indeed, if the underlying binding potential is isotropic and
harmonic, thenJ (Q̂, y) is an isotropic Gaussian and only the first term, proportional to
A000, is needed. Even for anharmonic potentials, the Compton profile is expected to consist
of a compact peak, and a fairly small number of terms in the expansion should suffice. The
{A}-coefficients, therefore, are an economical description of the data, and the coefficients
with n > 0 are directly related to the anharmonicity in the system [29].
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The expansion of the Compton profile in equation (32) has a definite symmetry.
The Hermite polynomial and the spherical harmonic each have parity(−1)l , and hence
J (−Q̂, −y) = J (Q̂, y). This is a symmetry which is obeyed byJ (Q̂, y) if the impulse
approximation is valid. Measured data, of course, will deviate from perfect symmetry. The
procedure of fitting the symmetric expansion will ignore the antisymmetric components in
the data, i.e. it will implicitly perform a symmetrization. This has, as a bonus, the effect
of removing leading-order corrections to the impulse approximation (see section 2.6). For
scattering from single crystals, there are likely to be additional symmetries in the directional
Compton profile arising from the point group symmetry of the lattice site of the struck atom.
In this case, the additional symmetry may be taken into account by expressing the expansion
in terms of lattice harmonics [29].

As a final point, we discuss scaling of the data. A uniform scale factory0 is already
included in equation (32). Choosingy0 to be the width of the best Gaussian fit to the
Compton profile matches the expansion to the data, and is likely to minimize the number
of coefficients needed. However, this simple prescription is not adequate for strongly
anisotropic data, where the width of the profile is very different in different directions.
Here we suggest a general procedure for anisotropic scaling.

There does not appear to be a simple relationship between the inverse Radon transforms
of two functionsJ (Q̂, y) differing by a linear coordinate transformation, i.e. it does not
appear useful to apply a linear transformation to the data. Instead, we ask the reverse
question of howJ (Q̂, y) changes when we transform the momentum distribution. Let us
suppose, then, that the anisotropic distributionn(q) can be made reasonably isotropic by a
linear scale change

q → q′ = (qx/αx, qy/αy, qz/αz) (35)

for a suitable choice of orthogonal axesxyz. Definingn′(q) = n(q′) and

Q′ = (αxQx, αyQy, αzQz) (36)

we find the Radon transform ofn′ to be

J ′(Q̂, y) ∝
∫

n(q′)δ(q′ · Q′ − y) dq′ = (1/Q′)J (Q̂′, y/Q′) (37)

whereQ′ is the length ofQ and Q̂′ = Q′/Q′, and an irrelevant constant factor has been
omitted. The suggested procedure is then as follows. Given a measured Compton profile,
J (Q̂, y), let αx , αy and αz be its characteristic widths along the chosen axes. Compute
the transformed profileJ ′(Q̂, y) according to equation (37), which amounts to a non-linear
coordinate transformation. After applying the expansion technique described previously to
reconstructn′(q) from J ′, use

n(q) = n′(αxqx, αyqy, αzqz) (38)

to find the required momentum distribution corresponding to the originalJ (Q̂, y).
The transformed Compton profileJ ′ is roughly isotropic. For example, if̂Q points

along thex-axis, thenJ ′(Q̂, y) ∝ J (Q̂, y/αx), which has unit width iny, by construction.
ThusJ ′ is a function for which the Radon inversion step, using the expansion method, is
efficient and stable.

3.2. Anharmonic potentials

The Compton profile for scattering from a harmonically bound atom is Gaussian, and a
measurement of its width yields the mean kinetic energy. Essentially the same information



Neutron Compton scattering 5971

might be obtainable by, for example, vibrational (infrared) spectroscopy. Where the neutron
Compton scattering technique for bound atoms comes into its own, then, is in the potential
to measure the anharmonicity of the binding potential, in cases where it is legitimate to
treat the struck atom in terms of single-particle motion in an effective potential. It is the
only technique capable of measuring Born–Oppenheimer potentials directly.

The extraction of the potential from the momentum distribution is simply a matter of
inverting the Schr̈odinger equation:

V (R) − E = (h̄2/2M)ψ−1∇2ψ (39)

whereψ(R) andψ(q) are Fourier transforms of each other, and the latter is obtained from
n(q) = |ψ(q)|2. The phase ambiguity in extracting the momentum-space wave function
from n(q) is not a problem for inversion-symmetric potentials, sinceψ(q) can always be
chosen to be real.

Figure 3. Model wave functions for an atom in a double-well potential. Each is the sum of two
Gaussian components of widthσ , centred a distance 2a apart. Solid line:a/σ = 0.25; dashed
line: a/σ = 0.6; dotted line:a/σ = 1.

It should be noted that the technique, at least in its simplest form, is restricted to systems
in which all atoms of the species under study have identical chemical environments. If
they do not, the Compton profile will be a superposition of contributions from different
environments.

An extreme case of an anharmonic potential is one with two minima, such as might
be expected for a proton in a hydrogen bond [28, 29]. A useful model for illustrating the
results expected for a double-well potential is to assume a ground state consisting of two
shifted Gaussians of equal amplitude:

ψ(x) = e−(x−a)2/2σ 2 + e−(x+a)2/2σ 2
(40)

in one dimension [28, 29, 66]. This function is plotted in figure 3 for selected values of the
ratioa/σ , and the corresponding potentialsV (x)−E appear in figure 4. For the largest value
of a/σ the potential consists of rather isolated harmonic wells, which gradually merge as
a/σ is reduced. Fora < σ , the potential is more accurately described as a single harmonic
well with a shallow ‘bump’ in the centre, and the wave function is a single non-Gaussian
peak.
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Figure 4. Model potentialsV (x) − E for each of the model wave functions in figure 3.

The Compton profile,J (y) = e−σ 2y2
cos2 ay, is plotted in figure 5 for an intermediate

valuea/σ = 0.6. It includes an oscillatory factor, representing interference between wave
functions localized in the two wells, and the overall shape is far from Gaussian. The
number of oscillations in each half-width of the Gaussian envelope is roughlya/σ , so
for weak anisotropy (a/σ < 1) the deviations from Gaussian form are less pronounced.
The coefficients in the Hermite expansion, equation (32), corresponding to thisJ (y) are
An ∝ (−a2/4σ 2)n/(2n)!, which fall off rapidly even for intermediatea/σ . In the limit
of large a/σ , the oscillations are so rapid that one observes only the average, which is
Gaussian as one would expect for isolated harmonic well.

This simple model may be extended to the case where the double-well potential, as
in a typical hydrogen bond, is not symmetric. It is found that the asymmetry suppresses
somewhat the oscillatory component in the wings of the Compton profile, which no longer
goes to zero at its minima.

4. Discussion

The Compton profile in figure 5, corresponding to a model of an atom in a double-well
potential, is far from Gaussian, which strongly suggests that anharmonicity of this kind
should be experimentally measurable. Reiter [28, 29] has carried out an analysis of the
practical limitations on measurements of anharmonicity, including the effect of sampling
noise (but not of non-zero instrumental resolution), concluding that extracting meaningful
atomic potential energy functions, using the series expansion method to analyse data, is
feasible. On the other hand, Sivia and Silver [67], in an analysis based on Bayesian
probability theory, have shown that the reconstruction of the momentum distribution from
the Compton profile is an intrinsically ill-posed problem, at least for studies of the condensate
fraction in superfluid helium. A simple statement of the essence of their result is that widely
different momentum distributions can yield the same Compton profile within experimental
error. This does not, of course, imply that momentum distributions cannot be extracted.
There are grounds to believe that the inverse problem for strongly anisotropic data for
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Figure 5. The Compton profile corresponding to the two-Gaussian model wave function, with
a/σ = 0.6.

single crystals is better behaved than for liquid4He: if the atomic motion is approximately
decoupled into independent motion along three different axes, the resulting one-dimensional
inversions are more stable than the three-dimensional inversion for isotropic data. Clearly,
further study of the reconstruction problem for neutron Compton scattering from solids is
desirable, to establish, for example, which features of the Compton profile are most sensitive
to anharmonicity, the limits to accuracy of reconstruction, and optimum algorithms.

Another question that deserves further investigation is the inclusion of corrections to
the impulse approximation in the reconstruction procedure. This is a well-studied problem
for scattering from superfluid helium [11], while for solids it is argued, as in section 3.1,
that the corrections are negligible. Nevertheless, we note that in figure 5 it would appear
to be the tails of the profile which are most sensitive to the presence of anharmonicity in
the potential, and even if corrections to the impulse approximation are small relative to the
recoil peak amplitude, they may be significant in the tails.

The past achievements of the neutron Compton scattering technique are impressive,
ranging from the mature body of work on superfluid helium, to more recent applications
in studies of quantum and classical liquids, and kinetic energies, anisotropy and quantum
effects in solids. Here we have summarized the theoretical background, and the prospects
for a new development of the technique, the reconstruction of momentum distributions by
direct inversion from the Compton profile. Taking into account theoretical work to date,
there are grounds for being cautiously optimistic. We await the first direct experimental
measurement of a three-dimensional atomic potential energy function in a solid.
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